Likelihood inference in generalized linear mixed measurement error models

نویسنده

  • Mahmoud Torabi
چکیده

The generalized linear mixed models (GLMMs) for clustered data are studied when covariates aremeasured with error. Themost conventional measurement error models are based on either linear mixed models (LMMs) or GLMMs. Even without the measurement error, the frequentist analysis of LMM, and particularly of GLMM, is computationally difficult. On the other hand, Bayesian analysis of LMM and GLMM is computationally convenient in both cases without and with the measurement error. Recent introduction of the method of data cloning has made frequentist analysis of mixed models also equally computationally convenient. As an application of data cloning, we conduct a frequentist analysis of GLMMwith covariates subject to themeasurement errormodel. The performance of the proposed approachwhich yields themaximum likelihood estimation is evaluated by two important real data types, Normal and logistic linearmixedmeasurement error models, and also through simulation studies. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Laplace approximation for measurement error correction in generalized linear (mixed) models

The Laplace approximation is applied to measurement error models when the likelihood function involves high dimensional integrals. The cases considered are generalized linear models with multiple covariates measured with error and generalized linear mixed models with measurement error in the covariates. The asymptotic order of the approximation and the asymptotic properties of the Laplace-based...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Stochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models

In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013